Cerro Coso College Course Outline of Record Report 10/07/2021

PHYSC111 : Mechanics

General Information

Author:	-
Course Code (CB01) :	PHYSC111
Course Title (CB02) :	Mechanics
Department:	Science
Proposal Start:	Fall 2013
TOP Code (CB03) :	(1902.00) Physics, General
SAM Code (CB09) :	Non-occupational
Distance Education Approved:	Yes
Course Control Number (CB00) :	CCC000247049
Curriculum Committee Approval Date:	03/09/2014
Board of Trustees Approval Date:	06/12/2014
External Review Approval Date:	07/24/2014
Course Description:	This course covers the fundamental laws of nature governing the motion of bodies and their relation to external forces. Motion in 1, 2, and 3 dimensions is covered as well as energy, linear momentum, angular momentum, gravitation, fluids, oscillations, and simple harmonic motion.
Submission Type:	New Course
Author:	No value

Faculty Minimum Qualifications

Master Discipline Preferred:	Physics/Astronomy
Alternate Master Discipline Preferred:	Physics/Astronomy
Bachelors or Associates Discipline Preferred:	No value
Additional Bachelors or Associates Discipline Preferred:	No value

Course Development Options

Basic Skills Status (CB08) Course is not a basic skills course.	Course Special Class Status (CB13) Course is not a special class.	Grade Options Letter Grade Methods Pass/No Pass
Allow Students to Gain Credit by Exam/Challenge	Allowed Number of Retakes 0	Course Prior To College Level (CB21) Not applicable.
Rationale For Credit By Exam/Challenge	Retake Policy Description	

Course Support Course Status (CB26)

No value

Associated Programs		
Course is part of a program (CB24) Associated Program	Award Type	Active
CC General Sciences	A.A. Degree Major	Spring 2018
CC Kinesiology for Transfer	A.A. Degree for Transfer	Spring 2018 to Fall 2018
CC Liberal Arts: Mathematics & Science	A.A. Degree Major	Summer 2018 to Fall 2020
Associate in Science Degree In Mathematics for Transfer	A.A. Degree for Transfer	Summer 2018
CSU General Education (CSU GE Breadth)	Certificate of Achievement	Fall 2020
Intersegmental General Education Transfer Curriculum Certificate of Achievement	Certificate of Achievement	Fall 2020
Liberal Arts: Mathematics & Science Associate in Arts Degree	A.A. Degree Major	Fall 2020
CSU General Education (CSU GE Breadth) (In Development)	Certificate of Achievement	Fall 2021
Intersegmental General Education Transfer Curriculum Certificate of Achievement (In Development)	Certificate of Achievement	Fall 2021

Transferability & Gen. Ed. Options

No value

Transferability			Transferability State	us
Transferable to both UC and CSU			Approved	
Cerro Coso General Education Requirements	Categories	Status	Approval Date	Comparable Course
Area 1.2	Natural Science Physical Sciences	Approved	No value	No Comparable Course defined.
CSU General Education Certification	Categories	Status	Approval Date	Comparable Course
Area B.1	Scientific Inquiry & Quantitative Reasoning Physical Sciences	Approved	No value	No Comparable Course defined.
Area B.3	Scientific Inquiry & Quantitative Reasoning Laboratory	Approved	No value	
Intersegmental General Education Transfer Curriculum	Categories	Status	Approval Date	Comparable Course
Area 5.A	Physical & Biological Sciences Physical Science	Approved	No value	No Comparable Course defined.

Units and Hours:

Summary	
Minimum Credit Units (CB07)	5
Maximum Credit Units (CB06)	5
Total Course In-Class (Contact) Hours	144
Total Course Out-of-Class Hours	126
Total Student Learning Hours	270
Faculty Load	0

Credit / Non-Credit Options

Course Credit Status (CB04)	Course Non Credit Category (CB22)	Non-Credit Characteristic
Credit - Degree Applicable	Credit Course.	No Value

Course Classification Status (CB11)

Funding Agency Category (CB23)

Course Student Hours

Not Applicable.

Cooperative Work Experience Education Status (CB10)

Credit Course.

Variable Credit Course

Weekly Student Hours

	In Class	Out of Classs	Course Duration (Weeks)	18
Lecture Hours	3.5	7	Hours per unit divisor	0
Laboratory Hours	4.5	0	Course In-Class (Contact) Hou	Jrs
Activity Hours	0	0	Lecture	0
			Laboratory	0
			Activity	0
			Total	144
			Course Out-of-Class Hours	
			Lecture	0
			Laboratory	0
			Activity	0
			Total	126

Time Commitment Notes for Students

No value

Faculty Load

Extra Duties: 0

Faculty Load: 0

Units and Hours: - Weekly Specialty Hours			
Activity Name	Туре	In Class	Out of Class
No Value	No Value	No Value	No Value

Pre-requisites, Co-requisites, Anti-requisites and Advisories

Prerequisite

MATHC151 - Analytic Geometry and Calculus I

Students taking PHYS C111 will encounter and utilize the mathematical concepts of differential calculus and integral calculus. MATH C151 provides those skills.

Co-Requisite

MATHC151 - Analytic Geometry and Calculus I

Students taking PHYS C111 will encounter and utilize the mathematical concepts of differential calculus and integral calculus. MATH C151 provides those skills.

Entrance Skills	
Entrance Skills	Description
No value	No value
Limitations on Enrollment	
Limitations on Enrollment	Description
No value	No value
Specifications	
Methods of Instruction	
Methods of Instruction	Other
Rationale	Other Methods: Recitation
Methods of Instruction	Outside reading
Rationale	No value
Methods of Instruction	Problem Solving
Rationale	No value
Methods of Instruction	Written work
Rationale	No value
Methods of Instruction	Laboratory
Rationale	No value

Methods of Instruction	Lecture
Rationale	No value
Methods of Instruction	In-class writing
Rationale	No value
Methods of Instruction	Instruction through examination or quizzing
Rationale	No value
Methods of Instruction	Group Work
Rationale	No value
Methods of Instruction	Discussion
Rationale	No value
Methods of Instruction	Demonstration
Rationale	No value
Methods of Instruction	Computational Work
Rationale	No value

Assignments

- A. Regular homework assignments to reinforce material covered in class. Example: The student is expected to answer instructor assigned questions from the relevant textbook chapters. B. Readings from the assigned textbook chapters. Example: The student is expected to read the textbook chapter that is covered each week. C. Preparatory readings for the assigned laboratory experiments. Example: The student is expected to read the lab procedures before each week's lab experiment. D. Written laboratory reports. Example: The student is expected to summarize his/her lab data, analysis, and results in the form of a written lab report.

Methods of Evaluation	Rationale
Homework	A. Regular homework assignments to reinforce material covered in class. Example: The student is expected to answer instructor assigned questions from the relevant textbook chapters.
Tests	B. Quizzes and exams evaluate the student's ability to apply techniques taught in class and apply these techniques to solving problems. Example: The first exam or quiz would include a question that requires the use of the free-fall equations.
Participation	C. Laboratory experiments measure the student's ability to perform experiments, work in groups, and assess the accuracy and precision of experiments where appropriate. Example: A laboratory experiment involving the analysis of projectile motion.

D. Written laboratory reports. Example: The student is expected to summarize his/her lab data, analysis, and results in the form of a written lab report.

Equipment

No Value				
Textbooks				
Author	Title	Publisher	Date	ISBN
	Halliday, Resnick, and Walker. (2014) Fundamentals of Physics, Extended, 10th, John Wiley & Sons, Inc.			
Other Instructional Materials				
Description Author	Other: Laboratory note:	s and procedures are deve	loped locally by the	local physics instructors.
Citation	Mechanics			
Materials Fee				
No				
Learning Outcomes and Objectives				
Course Objectives				
No value				
CSLOs				
Predict the future trajectory of an	object moving in two dimensions with u	uniform acceleration.		Expected SLO Performance: 70.0
Analyze a physical situation with multiple constant forces acting on a point mass using Newtonian mechanics.			Expected SLO Performance: 70.0	
Science Liberal Arts: Mathematics & Science AA Degree	Describe the nature of science, the methods developing a rigorous understanding of the	applied in scientific investiga physical world.	tions, and the value o	f those methods in
Analyze a physical situation with multiple forces acting on a point mass or extended object using concepts of work and energy. Expected SLO Performance: 70.0				
Analyze real-world experimental d	ata, including appropriate use of error	propagation, units and sig	nificant figures.	Expected SLO Performance: 70.0

Science Liberal Arts: Mathematics & Science AA Degree	Apply algebraic, graphical, numerical, and other methods to solve applied problems in the areas of mathematics, natural sciences, computer graphics, and computer animation.		
ISLOs Core ISLOs	Students who are completing a program will be able to access, evaluate, and effectively use	ely use information.	
Relate the results of experime	ntal data to the physical concepts discussed in the lecture portion of the class.	Expected SLO Performance: 70.0	

Social Science PLOs for CSU GE COA	Communicate scientific results by applying the appropriate scientific method, including experimental and empirical methodologies characteristic of science and modern methods and tools used in scientific inquiry through the use of graphs, oral communications, and writings.
Social Science IGETC PLOs	Communicate scientific results by applying the appropriate scientific method, including experimental and empirical methodologies characteristic of science and modern methods and tools used in scientific inquiry through the use of graphs, oral communications, and writings.

Outline

Course Outline

A. Measurement The International System of Units Changing Units Length Mass Time

B. Motion along Straight Line Position and Displacement Average Velocity and Average Speed Instantaneous Velocity and Instantaneous Speed Average Acceleration Instantaneous Acceleration Constant Acceleration Free-fall Acceleration

C. Vectors Vectors and Scalars Components of Vectors Unit Vectors Adding Vectors Multiplying Vectors

D. Motion in Two and Three Dimensions Position and Displacement Average Velocity and Average Speed Instantaneous Velocity and Instantaneous Speed Average Acceleration Instantaneous Acceleration Projectile Motion Uniform Circular Motion

E. Force and Motion Newtonian Mechanics Newton's First Law Force Mass Newton's Second Law Newton's Third Law

F. Particular Forces Gravitational Force Weight Normal Force Tension Friction Drag Force and Terminal Speed

G. Kinetic Energy and Work Energy Kinetic Energy Work Work and Kinetic Energy Work done by the Gravitational Force Work done by a Spring Force Work done by a Variable Force Power

H. Potential Energy and Conservation of Energy Potential Energy Work and Potential Energy Conservative Forces Conservation of Mechanical Energy Conservation of Energy

I. Center of Mass and Linear Momentum Center of Mass Linear Momentum Linear Momentum for a System of Particles Collisions and Impulse Conservation of Linear Momentum Elastic Collisions Inelastic Collisions

J. Rotation Angular Variables Constant Angular Acceleration Kinetic Energy of Rotation Rotational InertiaTorque Newton's Second Law for Rotation Work and Rotational Kinetic Energy

K. Rolling; Torque; and Angular Momentum Kinetic Energy of Rolling Forces of Rolling Torque and Rolling Angular Momentum Conservation of Angular Momentum Newton's Second Law in Angular Form Rigid Body Rotation

L. Equilibrium and Elasticity Equilibrium Static Equilibrium Center of Gravity Elasticity

M. Gravitation Newton's Law of Gravity Gravitation near Earth's Surface Gravitation inside Earth Gravitational Potential Energy Kepler's Laws Orbits N. Fluids Density and Pressure Static Fluids Pascal's Principle Archimedes' Principle Dynamics of Ideal Fluids Equation of Continuity Bernoulli's Equation

O. Oscillations Simple Harmonic Motion Pendulums Uniform Circular Motion Damped Simple Harmonic Motion Forced Simple Harmonic Motion Resonance

Lab Outline

The lab portion of this course consists of 10-12 hands-on experiments that complement and reinforce topics covered in lecture. Each lab experiment consists of: lab preparation; data collection; data analysis; and the presentation of lab results in the form of a written lab report. Lab topics may include; but are not limited to:

A. Measurement
B. Error Analysis
C. Projectile Motion
D. Force Table
E. Friction
F. Work and Kinetic Energy
G. Conservation of Energy
H. Statics of Structures
I. Ballistic Pendulum
J. Moments of Inertia of Rigid Objects
K. Torques on Rigid Objects
L. Buoyancy
M. Free-fall Acceleration near Earth's Surface

Delivery Methods and Distance Education

Delivery Method: Please list all that apply -Face to face -Online (purely online no face-to-face contact) -Online with some required face-to-face meetings ("Hybrid") -Online course with on ground testing -iTV – Interactive video = Face to face course with significant required activities in a distance modality -Other

Face 2 Face

Rigor Statement: Assignments and evaluations should be of the same rigor as those used in the on-ground course. If they are not the same as those noted in the COR on the Methods of Evaluation and out-of-class assignments pages, indicate what the differences are and why they are being used. For instance, if labs, field trips, or site visits are required in the face to face section of this course, how will these requirements be met with the same rigor in the Distance Education section?

No Value

Effective Student-Instructor Contact: Good practice requires both asynchronous and synchronous contact for effective contact. List the methods expected of all instructors teaching the course. -Learning Management System -Discussion Forums -Moodle Message -Other Contact -Chat/Instant Messaging -E-mail -Face-to-face meeting(s) -Newsgroup/Discussion Board -Proctored Exam -Telephone -iTV - Interactive Video -Other (specify)

No Value

Software and Equipment: What additional software or hardware, if any, is required for this course purely because of its delivery mode? How is technical support to be provided?

No Value

Accessibility: Section 508 of the Rehabilitation Act requires access to the Federal government's electronic and information technology. The law covers all types of electronic and information technology in the Federal sector and is not limited to assistive technologies used by people with disabilities. It applies to all Federal agencies when they develop, procure, maintain, or use such technology. Federal agencies must ensure that this technology is accessible to employees and the public to the extent it does not pose an "undue burden". I am using -iTV—Interactive Video only -Learning management system -Publisher course with learning management system interface.

itv LMS publisher

Class Size: Good practice is that section size should be no greater in distance ed modes than in regular face-to-face versions of the course. Will the recommended section size be lower than in on-ground sections? If so, explain why.

No Value