Cerro Coso College Course Outline of Record Report

PHSC C111 : Physical Science Lecture

General	Information
---------	-------------

Author:	Tech Support
Course Code (CB01) :	PHSC C111
Course Title (CB02) :	Physical Science Lecture
Department:	Science
Proposal Start:	Spring 2018
TOP Code (CB03) :	(1901.00) Physical Sciences, General
SAM Code (CB09) :	Non-Occupational
Distance Education Approved:	No
Course Control Number (CB00) :	No value
Curriculum Committee Approval Date:	10/14/2011
Board of Trustees Approval Date:	11/10/2011
External Review Approval Date:	12/15/2011
Course Description:	This course covers conceptual topics in physics and chemistry, with applications to the earth sciences and astronomy, for the non-science major. Topics such as motion, energy, electricity, magnetism, waves, atoms, chemistry and chemical reactions are covered. Not open to students who have completed PHSC 115.
Submission Type:	course integration into elumen No value
Author:	No value

Faculty Minimum Qualifications

Master Discipline Preferred:	 Astronomy Chemistry Earth Science Physical Sciences
Alternate Master Discipline Preferred:	No value
Bachelors or Associates Discipline Preferred:	No value
Additional Bachelors or Associates Discipline Preferred:	No value

Course Development Options

Basic Skills Status (CB08)

Course Special Class Status (CB13)

Course is not a basic skills course.

Course is not a special class.

Grade Options

• Letter Grade Methods

• Pass/No Pass

Allannad Ninnahan of Dotalias

Course Dates To College Level (CD01)

Allow Students to Gain Credit by Exam/Challenge	Allowed Number of Ketakes	Course Prior to College Level (CB21) No value
Rationale For Credit By Exam/Challenge No value	Retake Policy Description Non-Repeatable Credit	Allow Students To Audit Course
Course Support Course Status (CB26) No value		

Associated Programs

Course is part of a program (CB24)

Associated Program	Award Type	Active
CC Liberal Arts: Mathematics & Science	A.A. Degree Major	Summer 2018 to Fall 2020
CSU General Education (CSU GE Breadth)	Certificate of Achievement	Fall 2020
Intersegmental General Education Transfer Curriculum Certificate of Achievement	Certificate of Achievement	Fall 2020
Liberal Arts: Mathematics & Science Associate in Arts Degree	A.A. Degree Major	Fall 2020
CSU General Education (CSU GE Breadth) (In Development)	Certificate of Achievement	Fall 2021
Intersegmental General Education Transfer Curriculum Certificate of Achievement (In Development)	Certificate of Achievement	Fall 2021

Transferability & Gen. Ed. Options

Transferability Status
Pending

Cerro Coso General Education Requirements	Categories	Status	Approval Date	Comparable Course
Area 1.2	Natural Science Physical Sciences	Pending	No value	No Comparable Course defined.
CSU General Education Certification	Categories	Status	Approval Date	Comparable Course
Area B.1	Scientific Inquiry & Quantitative Reasoning Physical Sciences	Pending	No value	No Comparable Course defined.
Intersegmental General Education Transfer Curriculum	Categories	Status	Approval Date	Comparable Course
Area 5.A	Physical & Biological Sciences Physical Science	Pending	No value	No Comparable Course defined.

Units and Hours

Summary	
Minimum Credit Units (CB07)	3
Maximum Credit Units (CB06)	3
Total Course In-Class (Contact) Hours	54
Total Course Out-of-Class Hours	108
Total Student Learning Hours	162
Faculty Load	0

Credit / Non-Credit Options

Lecture Hours 3 6

Course Credit Status (CB04)	Course Non Credit Category (CB22)	Non-Credit Characteristic	
Credit - Degree Applicable	Credit Course.	No Value	
Course Classification Status (CB11)	Funding Agency Category (CB23)	Cooperative Work Experience Education	
Credit Course.	No value	Status (CB10)	
Variable Credit Course			
Weekly Student Hours Course Stud		t Hours	
In Class	Out of Classs Course Duration (Weeks) 18	

Hours per unit divisor 54

Laboratory Hours	0	0	Course In-Class (Contact) Hours	
Activity Hours	0	0	Lecture	54
			Laboratory	0
			Activity	0
			Total	54
			Course Out-of-Class Hours	
			Lecture	108
			Laboratory	0
			Activity	0
			Total	108

Time Commitment Notes for Students

No value

Faculty Load

Extra Duties: 0

Faculty Load: 0

Units and Hours - Weekly Specialty Hours			
Activity Name	Туре	In Class	Out of Class
No Value	No Value	No Value	No Value

Pre-requisites, Co-requisites, Anti-requisites and Advisories

Prerequisite

MATHC055 - Intermediate Algebra

Students entering PHSC C111 are required to solve problems involving mathematical operations such as ratios, square roots, surface areas related to radius, and solving for a single variable.

AND

Advisory

ENGLC070 - Introductory Composition

Reading - 1 Level Prior to Transfer

Content Review

Students entering PHSC C111 are expected to identify central points, both explicit and implied, of scientific periodical articles and textbooks, outline and summarize complex and technical scientific readings, interpret difficult and figurative language: academic discourse and scientific terminology, write lab reports in an accepted format. Students are also expected to answer essay questions in clear and error free prose based on readings from texts and scientific journals and also outline and summarize assigned readings texts and scientific journals.

The reading advisory level provides the student with the requisite skills to meet this expectation.

Writing - 2 Levels Prior to Transfer

Content Review

Students entering PHSC C111 are expected to identify central points, both explicit and implied, of scientific periodical articles and textbooks, outline and summarize complex and technical scientific readings, interpret difficult and figurative language: academic discourse and scientific terminology, write lab reports in an accepted format. Students are also expected to answer essay questions in clear and error free prose based on readings from texts and scientific journals and also outline and summarize assigned readings texts and scientific journals.

The writing advisory level provides the student with the requisite skills to meet this expectation.

Entrance Skills		
Entrance Skills	Description	
No value	No value	
Limitations on Enrollment		
Limitations on Enrollment	Description	
No value	No value	
Specifications		
Methods of Instruction		
Methods of Instruction	Demonstration	
Rationale	No value	
Methods of Instruction	Discussion	
Rationale	No value	
Methods of Instruction	In-class writing	
Rationale	No value	
Methods of Instruction	Lecture	
Rationale	No value	

Methods of Instruction	Outside reading
Rationale	No value
Methods of Instruction	Peer analysis, critique & feedback
Rationale	No value
Methods of Instruction	Presentations (by students)
Rationale	No value
Methods of Instruction	Problem Solving
Rationale	No value
Methods of Instruction	Written work
Rationale	No value
Methods of Instruction	Other
Rationale	Recitation

Assignments

A. Homework assignments from the relevant chapter, including participation in the recitation/discussion session. Example: Students must solve problems on distance, velocity and acceleration and participate in discussions distinguishing the relationship among these three terms. B. Assigned readings from the textbook and/or other sources. Example: Students must read the relevant chapter on forces and how to analyze the forces that a person parachuting to earth encounters. C. Research Paper/Presentation. Example: Students are required to present a paper on the chemicals found in their household and the benefits and dangers of each. D. Critical Analysis of course relevant topics that appear in the media. Example: Students are required to read two science-based (not popular media) articles on both sides of the climate change discussion and present a cogent synopsis, including the strengths and weaknesses of each paper.

Methods of Evaluation	Rationale
Tests	Exams and Quizzes evaluate the students' ability to apply techniques taught in class and apply these techniques in problem solving. Example: The first midterm exam requires students to conceptually solve equations relating to the motion of an object under the influence of gravity and air resistance.
Homework	Regular homework assignments reinforce material learned in class and evaluate the student's ability to learn outside the classroom. Example: A homework assignment covers the conceptual analysis of electric current in the household
Participation	

Participation in Problem Solving evaluates the student's ability to solve problems in a group environment. Example: Students participate in the analysis of the speed of sound

Equipment

No Value

 Textbooks
 Author
 Title
 Publisher
 Date
 ISBN

 Hewitt, P. G. Suchocki, J., & Hewitt, L. A.
 Conceptual Physical Science., Sth,
 Addison-Wesley
 2012

 Other Instructional Materials
 No Value
 Value
 Value
 Value

Materials Fee

No value

Learning Outcomes and Objectives			
Course Objectives No value			
CSLOs			
Solve problems related to motion, momentum and energy using the appropriate theoretical concept.	Expected SLO Performance: 70.0		
Perform an analysis of thermodynamic concepts in order to solve problems in heat transfer and phase change.	Expected SLO Performance: 70.0		
Use the concepts of electromagnetism and wave theory to solve problems related to electricity, magnetism, waves and sound. Expected SLO Performance: 70.0			
Solve problems involved in basic chemistry, chemical bonding, reactions and mixtures using the concepts of conservation of mass, bonding theory and atomic theory. Expected SLO Performance: 70.0			
Analyze and utilize the scientific method and proper scientific formatting in problem solving.	Expected SLO Performance: 70.0		

Outline

Course Outline

1 Aristotle On Motion 2 Galileo's Concept of Inertia 3 Mass—A Measure of Inertia 4 Net Force 5 The Equilibrium Rule 6 Support Force 7 Equilibrium Of Moving Things 24. 7 Equilibrium Of Moving Things 8 The Force of Friction 9 Speed and Velocity a. Speed b. Instantaneous speed c. Average speed d. Velocity 10 Acceleration B. Newton's Laws of Motion 1. Newton's First Law Of Motion 2. Newton's Second Law of Motion 3. Forces and Interactions 4. Newton's Third Law of Motion 5. Vectors 6. Summary of Newton's Three Laws C. Momentum and Energy 1. Momentum 2. Impulse 3. Impulse-Momentum Relationship 4. Conservation of Momentum a. Collisions 5. Energy a. Work 6. Power 7. Potential Energy 8. Kinetic Energy a. Work-Energy Theorem b. Kinetic Energy and Momentum Compared 9. Conservation of Energy 10. Machines a. Efficiency D. Thermal Energy and Thermodynamics 1. Thermal Energy 2. Temperature 3. Absolute Zero 4. Heat 5. Quantity of Heat 6. The Laws of Thermodynamics 7. Specific Heat Capacity 8. Thermal Expansion a. Expansion of Water E. Heat Transfer and Change of Phase 1. Conduction 2. Convection 3. Radiation a. Emission of Radiant Energy b. Absorption of Radiant Energy c. Reflection of Radiant Energy d. Cooling at Night by Radiation 4. Newton's Law Of Cooling 5. Heat Transfer and Change of Phase 6. Evaporation 7. Condensation 8. Boiling 9. Melting and Freezing

A. Motion and Equilibrium

- 10. Energy and Change of Phase
- F. Static and Curernt Electricity
- 1. Electric Force and Charge

- a. Conservation of Charge
- 2. Coulomb's Law
- a. Charge Polarization
- 3. Electric Field
- 4. Electric Potential
- 5. Voltage Sources
- 6. Electric Current
- a. Direct Current and Alternating Current
- 7. Electrical Resistance
- 8. Ohm's Law
- a. Electric Shock
- 9. Electric Circuits
- a. Series Circuits
- b. Parallel Circuits
- c. Parallel Circuits and Overloading
- d. Safety Fuses
- 10. Electric Power
- G. Magnetism and Electromagnetic Induction
- 1. Magnetic Poles
- 2. Magnetic Fields
- 3. Magnetic Domains
- 4. Electric Currents and Magnetic Fields
- a. Electromagnets
- b. Superconducting Electromagnets
- 5. Magnetic Forces on Moving Charges
- a. Magnetic Force on Current-Carrying Wires
- b. Electric Meters
- c. Electric Motors
- 6. Electromagnetic Induction
- a. Faraday's Law
- 7. Generators and Alternating Current
- 8. Power Production
- 9. The Transformer—Boosting or Lowering Voltage
- 10. Field Induction
- H. Waves and Sound
- 1. Vibrations and Waves
- 2. Wave Motion
- a. Wave Speed
- 3. Transverse and Longitudinal Waves
- 4. Sound Waves
- a. Speed of Sound
- 5. Reflection of Sound
- 6. Refraction of Sound
- 7. Forced Vibrations
- 8. Resonance
- 9. Interference
- a. Beats
- b. Standing Waves
- 10. Doppler Effect
- 11. Wave Barriers And Bow Waves
- 12. Shock Waves and the Sonic Boom
- 13. Musical Sounds
- a. Musical Instruments
- I. Light Waves
- 1. Electromagnetic Spectrum
- 2. Transparent and Opaque Materials
- 3. Color
- a. Selective Reflection
- b. Selective Transmission
- c. Mixing Colored Lights
- d. Mixing Colored Pigments
- e. Why the Sky Is Blue
- f. Why Sunsets Are Red
- g. Why Clouds Are White
- 4. Diffraction
- 5. Interference
- a. Interference Colors by Reflection from Thin Films

- 6. Polarization
- J. Atoms and Periodic Table
- 1. The Elements
- 2. Atoms Are Ancient and Empty
- 3. Protons and Neutrons
- 4. Isotopes and Atomic Mass
- a. Figuring Physical Science: Calculating Atomic Mass
- 5. The Periodic Table
- 6. Periods and Groups
- K. Elements of Chemistry
- 1. Chemistry: The Central Science
- 2. The Submicroscopic World
- 3. Physical and Chemical Properties
- 4. Determining Physical and Chemical Changes
- 5. Elements to Compounds
- 6. Naming Compounds
- 7. Chemical Equations
- a. Balancing Unbalanced Equations
- L. Mixtures
- 1. Most Materials Are Mixtures
- a. Mixtures Can Be Separated By Physical Means
- 2. The Chemist's Classification of Matter
- 3. Solutions
- 4. Purifying the Water We Drink
- 5. Desalination
- 6. Wastewater Treatment
- a. Advanced Integrated Pond Systems
- M. How Atoms Bond
- 1. Electron-Dot Structures
- 2. The Formation of lons
- a. Molecules Can Form Ions
- 3. Ionic Bonds
- 4. Covalent Bonds
- 5. Polar Covalent Bonds
- 6. Molecular Polarity
- 7. Metallic Bonds
- a. We Should Conserve and Recycle Metals
- N. Chemical Reaction
- 1. Reaction Rates
- 2. Catalysts
- 3. Energy and Chemical Reactions
- a. An Exothermic Reaction Involves a Net Release of Energy
- b. An Endothermic Reaction Involves a Net Absorption of Energy
- 4. Relative Masses of Atoms and Molecules
- 5. Molar Mass