MATHC251 : Analytic Geometry and Calculus III

General Information	
Author (s)::	Vivian Baker
Course Code (CB01):	MATHC251
Course Title (CB02):	Analytic Geometry and Calculus III
Department:	Mathematics
Proposal Start:	Fall 2018
TOP Code (CB03):	(1701.00) Mathematics, General
SAM Code (CB09):	Non-occupational
Distance Education Approved:	Yes
Course Control Number (CB00):	CCC000231937
Curriculum Committee Approval Date:	10/20/2017
Board of Trustees Approval Date:	12/14/2017
External Review Approval Date:	Pending
Course Description:	This course is a continuation of Analytic Geometry and Calculus II, extending the skills of differentiation and integration by learning new techniques and working with partial derivatives and double and triple integrals. Other major topics include cylindrical and spherical coordinates, quadric surfaces, vector functions, vector analysis, Green''s theorem and Stoke''s theorem.
Submission Type:	Change to Content
	Course is being updated to align program applicability with current programs, move current C-ID- defined SLO's to "Objectives," add locally-determined SLO's, and reduce the unit value from 5 to 4.

Faculty Minimum Qualifications		
 Mathematics Engineering Physics/Astronomy 		
No value		
No value		

Course Development Options				
Basic Skills Status (CB08)	Course Special Class Status (CB13)	Grade Options		
Course is not a basic skills course.	Course is not a special class.	Pass/No PassLetter Grade methods		
Allow Students to Gain Credit by Exam/Challenge	Allowed Number of Retakes	Course Prior To College Level (CB21) Not applicable.		
Rationale For Credit By Exam/Challenge No value	Retake Policy Description Type: Non-Repeatable Credit	Allow Students To Audit Course		

Associated Programs

	Course	is par	t of a	program
--	--------	--------	--------	---------

Associated Program	Award Type
CC Liberal Arts: Mathematics & Science	A.A. Degree Major
Associate in Science Degree In Mathematics for Transfer	A.A. Degree for Transfer
Economics Associate in Arts Degree for Transfer (AA-T)	A.A. Degree for Transfer
CSU General Education (CSU GE Breadth)	Certificate of Achievement
Intersegmental General Education Transfer Curriculum Certificate of Achievement	Certificate of Achievement

Units and Hours Summary Minimum Credit Units (CB07) 4 Total Course In-Class (Contact) 72 Total Student Learning Hours 216 Hours Maximum Credit Units (CB06) Total Course Out-of-Class Faculty Load 4 144 _ Hours Credit / Non-Credit Options Course Credit Status (CB04) Course Non Credit Category (CB22) Non-Credit Characteristics Credit Course. Credit - Degree Applicable No value Course Classification Code (CB11) Funding Agency Category (CB23) Cooperative Work Experience Education Status (CB10) Credit Course. Not Applicable.

Out of Class

8

Variable Credit Course

Weekly Student Hours

	In Class
Lecture Hours	4
Lab Hours	-
Activity Hours	-

Course Student Hours

Course Duration (Weeks)	18
Hours per unit divisor	54
Course In-Class (Contact) H	ours
Lecture	72
Lab	-
Activity	-
Total	72
Course Out-Of-Class Hours	
Lecture	144
Lab	-
Activity	-
Total	144

Time Commitment Notes for Students

No value

Faculty Load

Extra Duty: -

Faculty Load: -

Units and Hours - Weekly Specialty Hours			
Activity Name	Туре	In Class	Out of Class
No value	No value	No value	No value

Requisites

Prerequisite

MATHC152 - Analytic Geometry and Calculus II

In Math C251 students are expected to consistently write the derivative of expressions that contain the inverse trigonometric, logarithmic, exponential, hyperbolic, and inverse hyperbolic functions; evaluate integrals (definite and indefinite) by using fundamental integral formulas, partial fractions, integration by parts, and substitutions, trigonometric substitutions; expand skills with limits, including l'Hôpital's Rule and improper integrals; identify the conic section represented by a second degree equation and give the foci, vertices, and directricies; use polar coordinates to graph equations and to find area, arc length, and intersection of curves; use the tests for convergence and divergence of sequences and series; write infinite series representations of various functions; and use the fundamental concepts of vectors including sums, dot product, and projection. Students successfully demonstrating these Math C152 skills will be prepared for Math C251.

Entrance Skills		
Skill	Content Review	
No value	No value	
Limitations on Enrollment		
Limitation	Provide Rationale	

No value

Methods of Instruction Rationale
Other Methods: A. lecture and discussion of all course concepts. B. demonstration of developing proofs and solving application problems. C. reading textbooks and journals to see presentations different than those of the instructor. D. assignments and quizzes E. the use of computational and other types of mathematical software
No value
No value

No value

Assignments

A. Reading assignments. B. Bi-weekly homework assignments. Example: Students work mathematics problems assigned from the text and from handouts to reinforce concepts and skills discussed in lecture. Sample homework problem: Find the volume of the solid that is bounded above by the cylinder mage and below by the region enclosed by the parabola mage and the line mage in the mage -plane. B. Online Course Management System Example: Assignments on MyMathLab

Methods of Evaluation	Methods of Evaluati	on Rationale			
Tests		A. tests on course content, to include solving equations as well as demonstration of specific skills B. quizzes (in-class and take-home) to include solving equations as well as demonstration of specific skills			
Participation	C. group work to analy	ze and solve application	problems		
Equipment					
No Value					
Textbooks					
Author	Title	Publisher	Date	ISBN	
Hass, Heil, Weir	Thomas' Calculus 14th ed. with MyMathLab	Addison-Wesley	2017		
Other Instructional Materials					
Description	Author		Citation		
No Value	No Value		No Value		
Materials Fee					
No					
Learning Outcomes and 0	Dbjectives				
Course Objectives					
Perform vector operations.					
Determine equations of lines and plan	nes.				
Find the limit of a function at a point.					

Evaluate derivatives.

Write the equation of a tangent plane at a point.

Determine differentiability.

Find local extrema and test for saddle points.	
Solve constraint problems using Lagrange multipliers.	
Compute arc length.	
Find the divergence and curl of a vector field.	
Evaluate two and three dimensional integrals.	
Apply Green's, Stokes', and divergence theorems.	
CSLOs	
Apply the basic fundamentals of one variable differential and integral calculus as they pertain to multivariable calculus integration.	, including derivation and Expected SLO Performance: 70.0
Use vectors and vector functions to model and solve problems by applying vector addition, scalar multiplication, the d product and the calculus of vector functions.	ot product, the cross Expected SLO Performance: 70.0
Apply the basics of vector calculus including line integrals, Green's Theorem, curl and divergence, and surface integrals	Expected SLO Performance: 70.0
Model spatial problems with vectors, lines, planes, curves and surfaces in space.	Expected SLO Performance: 70.0
Use differentiation for vector-valued functions to compute tangent lines.	Expected SLO Performance: 70.0

Outline

Outline

The Mathematics Department has adopted the following best practices for teaching this course: offering or awarding extra-credit is forbidden, the allowance of multiple attempts at exams is forbidden, and an approved on-site proctor for online course exams is required.

A. Vectors and vector operations in two and three dimensions;

B. Vector and parametric equations of lines and planes; rectangular equation of a plane;

C. Dot, cross, and triple products and projections;

D. Differentiability and differentiation including partial derivatives, chain rule, higher-order derivatives, directional derivatives, and the gradient;

- E. Compute arc length and surface areas; tangent, normal, binormal vectors;
- F. Vector-valued functions and their derivatives and integrals; finding velocity and acceleration;
- G. Real-valued functions of several variables, level curves and surfaces;

H. Limits, continuity, and properties of limits and continuity;

- I. Local and global maxima and minima extrema, saddle points, and Lagrange multipliers;
- J. Vector fields including the gradient vector field and conservative fields;
- K. Double and triple integrals;
- L. Applications of multiple integration such as area, volume, center of mass, or moments of inertia;

M. Change of variables theorem;

N. Integrals in polar, cylindrical, and spherical coordinates;

O. Line and surface integrals including parametrically defined surfaces;

P. Integrals of real-valued functions over surfaces;

Q. Divergence and curl; and

R. Green's, Stokes', and divergence theorems.

Delivery Methods and Distance Education

Delivery Method: Please list all that apply -Face to face -Online (purely online no face-to-face contact) -Online with some required face-to-face meetings ("Hybrid") -Online course with on ground testing -iTV – Interactive video = Face to face course with significant required activities in a distance modality -Other

Online with some required face-to-face meetings ("Hybrid") iTV – Interactive video = Face to face course with significant required activities in a distance modality Online course with on ground testing Face to face

Rigor Statement: Assignments and evaluations should be of the same rigor as those used in the on-ground course. If they are not the same as those noted in the COR on the Methods of Evaluation and out-of-class assignments pages, indicate what the differences are and why they are being used. For instance, if labs, field trips, or site visits are required in the face to face section of this course, how will these requirements be met with the same rigor in the Distance Education section?

All assignments in distance education courses (online, hybrid and iTV) are the same as those in the on-ground course, except that students in purely online sections will submit all of their assignments virtually, and students in hybrid sections will submit some of their assignments virtually. Instructor evaluation of student work in distance education courses is the same as in the on-ground course, except that evaluation of student work in online and hybrid courses is presented virtually. Instead of onsite lectures, hybrid and online courses will use videos and written lecture notes.

As with any on-ground class, the instructor must provide substantive critiques of all submitted material and at least general responses to discussion posts. Instructor assigns the completion of math problems in a publisher site as an exercise including check figures and assistance when needed. The publisher's site will reinforce the course's SLO's.

Effective Student-Instructor Contact: Good practice requires both asynchronous and synchronous contact for effective contact. List the methods expected of all instructors teaching the course. -Learning Management System -Discussion Forums -Moodle Message -Other Contact -Chat/Instant Messaging -E-mail -Face-to-face meeting(s) - Newsgroup/Discussion Board -Proctored Exam -Telephone -iTV - Interactive Video -Other (specify)

forums message email face2face proctored

Software and Equipment: What additional software or hardware, if any, is required for this course purely because of its delivery mode? How is technical support to be provided?

No Value

Accessibility: Section 508 of the Rehabilitation Act requires access to the Federal government's electronic and information technology. The law covers all types of electronic and information technology in the Federal sector and is not limited to assistive technologies used by people with disabilities. It applies to all Federal agencies when they develop, procure, maintain, or use such technology. Federal agencies must ensure that this technology is accessible to employees and the public to the extent it does not pose an "undue burden". I am using -iTV—Interactive Video only -Learning management system -Publisher course with learning management system interface.

itv LMS publisher

Class Size: Good practice is that section size should be no greater in distance ed modes than in regular face-to-face versions of the course. Will the recommended section size be lower than in on-ground sections? If so, explain why.

class_size Hybrid 45