Course Outline of Record Report

10/12/2021

ITC251: Introduction to Programming Concepts and Methodologies

General Information

Author: • Matthew Hightower

• Karnes, Valerie

Course Code (CB01): ITC251

Course Title (CB02): Introduction to Programming Concepts and Methodologies

Department:Business Information Technolog

Proposal Start: Spring 2019

TOP Code (CB03): (0702.00) Computer Information Systems

SAM Code (CB09): Clearly Occupational

Distance Education Approved: Yes

Course Control Number (CB00): CCC000564176

Curriculum Committee Approval Date: 03/16/2018

Board of Trustees Approval Date: 06/14/2018

External Review Approval Date: Pending

Course Description: This course is an introduction to the fundamental concepts and models of application

development including the basic concepts of program design, data structures, programming, problem solving, programming logic, and fundamental design techniques for event-driven programs. Students receive hands-on experience with a modern application programming

language and development platform. Note: This course was formerly CSCI C251.

Submission Type: Improvement to Program of Study

Per program review, change CSCI to IT designation for program clarification and SLO data

assessment.

Author: No value

Faculty Minimum Qualifications

Master Discipline Preferred:

- Computer Information Systems (Computer network installation, microcomputer technology, computer applications)
- Computer Science

Alternate Master Discipline Preferred:

Computer Science

Bachelors or Associates Discipline Preferred:

 Computer Information Systems (Computer network installation, microcomputer technology, computer applications)

Additional Bachelors or Associates Discipline

Preferred:

No value

Course Development Options

Basic Skills Status (CB08)	Course Special Class Status (CB13)	Grade Options
Course is not a basic skills course.	Course is not a special class.	Letter Grade MethodsPass/No Pass
Allow Students to Gain Credit by	Allowed Number of Retakes	Course Prior To College Level (CB21)
Exam/Challenge	0	Not applicable.
Rationale For Credit By Exam/Challenge	Retake Policy Description	Allow Students To Audit Course
No value	Type: Non-Repeatable Credit	Allow Students To Addit Course
Course Support Course Status (CB26)		
No value		

Associated Programs		
Course is part of a program (CB24) Associated Program	Award Type	Active
Cyber Security Technology	A.S. Degree Major	Spring 2018
CC Liberal Arts: Mathematics & Science	A.A. Degree Major	Summer 2018 to Fall 2020
Associate in Science Degree In Mathematics for Transfer	A.A. Degree for Transfer	Summer 2018
Cyber Security Technician	Certificate of Achievement	Spring 2018
CC Computer Information Systems-	Certificate of Achievement	Spring 2018 to Summer 2019
CC Computer Information Systems	A.S. Degree Major	Spring 2018 to Summer 2019
CC Information Technology	Certificate of Achievement	Summer 2019
CC Information Technology	A.S. Degree Major	Summer 2019
Cloud Computing	Certificate of Achievement	Fall 2020 to Spring 2021

Liberal Arts: Mathematics & Science Associate in Arts Degree	A.A. Degree Major	Fall 2020
Web Professional Associate of Science (In Development)	A.S. Degree Major	Fall 2022
Web Professional Certificate of Achievement (In Development)	Certificate of Achievement	Fall 2022

Transferability & Gen. Ed. Options		
Course General Education Status (CB25)		
No value		
Transferability	Transferability Status	
Transferable to both UC and CSU	Approved	

Units and Hours				
Summary				
Minimum Credit Units (CBC	07) 3			
Maximum Credit Units (CB	3			
Total Course In-Class (Cont Hours	tact) 90			
Total Course Out-of-Class Hours	72			
Total Student Learning Ho	urs 162			
Faculty Load	0			
Credit / Non-Credit	Options			
Course Credit Status (CB04	!)	Course Non Credit (Category (CB22)	Non-Credit Characteristic
Credit - Degree Applicable		Credit Course.		No Value
Course Classification Status	s (CB11)	Funding Agency Ca	tegory (CB23)	Cooperative Work Experience Education
Credit Course.		Not Applicable.		Status (CB10)
Variable Credit Course				
			Course Student I	Hours
Weekly Student Ho	urs			
Weekly Student Ho	urs n Class	Out of Classs	Course Duration (We	eeks) 18

Laboratory Hours	3	0	Course In-Class (Contac	t) Hours	
Activity Hours	0	0	Lecture	36	
			Laboratory	54	
			Activity	0	
			Total	90	
			Course Out-of-Class Ho	ırs	
			Lecture	72	
			Laboratory	0	
			Activity	0	
			Total	72	

Time Commitment Notes for Students

No value

Faculty Load

Extra Duties: 0 Faculty Load: 0

Units and Hours - Weekly Specialty Hours			
Activity Name	Туре	In Class	Out of Class
No Value	No Value	No Value	No Value

Pre-requisites, Co-requisites, Anti-requisites and Advisories

Prerequisite

ITC101 - Introduction to Computer Information Systems

IT C101 Course Prerequisite for Conditions of Enrollment for IT 251

Students are expected to have a working knowledge of applications programs and file management (example: Students should know how to work with Windows applications such as Word and Excel and should know how to save, rename, find, and delete files). In addition, students should have an introductory knowledge of how computers and information systems are used in business, how computers are programmed, and how to install software (example: Students will need to install the programming language and Integrated Development Environment (IDE) and the basics of how computer programs work and what they are used for).

—	4		01.:	
⊨n	ıtra	nce	SKI	IIS

Entrance Skills Description

No value No value

Limitations on Enrollment	
Limitations on Enrollment	Description
No value	No value

Specifications	
Methods of Instruction	
Methods of Instruction	Other
Rationale	Other Methods: A. PowerPoint lectures demonstrating the logic, syntax and use of programming controls, properties, structures, and classes.
Methods of Instruction	Written work
Rationale	No value
Methods of Instruction	Project-based learning
Rationale	No value
Methods of Instruction	Outside reading
Rationale	No value
Methods of Instruction	Laboratory
Rationale	No value
Methods of Instruction	Lecture
Rationale	No value
Methods of Instruction	Demonstration
Rationale	No value

Methods of Instruction Rationale	Discussion No value
Methods of Instruction Rationale	Instruction through examination or quizzing No value
Methods of Instruction Rationale	Computational Work No value

Assignments

- A. Chapter reading (Example: Reading the assigned chapters from the textbook based on the topics for the week).
- B. Weekly step-by-step coding assignments (Example Follow and interpret examples to write and test program coding assignments).
- C. Weekly application design assignments (Example:Design program flow and control for a variety of programming tasks based on requirements received).

Methods of Evaluation	Rationale
Final Exam	Final Exam demonstrating comprehensive mastery of material presented. Example: Multiple choice and essay question exam covering all concepts of the course.
Participation	Weekly discussion participation demonstrating understanding of programming concepts . Example: Please use the forum to post your progress and your thoughts regarding the Chapter assignments. Also post any questions or problems that you may be having with the assignment. Do this by Thursday night.
	Reply to at least two other posts between Friday and Sunday. You can either assist another student by providing help with their questions or respond to their posted thoughts where appropriate
Homework	Weekly programming assignments demonstrating mastery of new programming material. Example: Program coding assignment on use of control structures.
Tests	Midterm Exam(s) demonstrating mastery of material in the first half of instruction. Example: Multiple choice and essay question exam covering variables, types, expressions, and methods.

Equipment

Students need access to a computer (Windows, Mac, or Linux) with the Python programming environment.

Textbooks Author	Title	Publisher	Date	ISBN
Horstmann, C. & Necaise, R.	Python for Everyone (2nd ed.)	Wiley	2016	978-1-119-05655-3
Other Instructional Materials				

Description	Python 3.5+ programming environment. This software is free and is available for Windows, Mac OS, and Linux environments.	
Author	No value	
Citation	No value	
Materials Fee		
No		
Learning Outcomes and Objectives	3	
Course Objectives		
Use primitive data types and data structures offered	I by the development environment.	
Choose an appropriate data structure for modeling	a simple problem.	
Identify basic programming concepts.		
Write simple applications that relate to a specific do	omain.	
Design, implement, test, and debug a program that standard conditional and iterative structures, and the	uses each of the following fundamental programming constructs: basic computation, simple I/O, le definition of functions.	
Test applications with sample data.		
Apply core program control structures.		
CSLOs		
Design, implement, test, and debug a program th I/O, standard conditional and iterative structures,	at uses each of the following fundamental programming constructs: basic computation, simple and functions. Expected SLO Performance: 70.0	
ISLOs Students who are completing a pro- Core ISLOs	gram will be able to think critically and creatively and apply reasoning.	
Test applications with sample data. Expected SLO Performance: 70.0		
Apply core program control and data structures.	Expected SLO Performance: 70.0	

Outline

Course Outline

```
A.Programming Overview
a.History of programming
b.Types of languages
i.Procedural
ii.Event-driven
iii.Object oriented
```

B.Program design

a.Program development lifecycle

b.Requirements determinants and analysis

c.Modular design

d.Techniques for modeling program structures

C.Programming concepts

a.Variables

b.Literals c.Types

d.Expressions

D.Control Structures

a.Operators and operations

b.Decision logic i.If then

ii.If then else

c.Looping

i.For Next ii.Do Loop iii.Counters iv.Accumulators

E.Procedures

a.Functions

b.Sub-procedures

c.Passing parameters

F.Coding

a.Unit testing

b.Debugging tools

c.Implementation

G. File and array processing

a. Arrays and matrices

b. Sequential files

c. Database files

Lab Outline

Students complete step-by-step programming examples to introduce programming concepts. Building upon the examples; students design and develop Graphical User Interfaces (GUIs) weekly.

A. Introduction to Windows-based Applications

- a. Working with Controls
- b. Creating a GUI
- B. Writing Algorithms
 - a. Pseudocode/Flowcharting
 - b. Coding; Testing; Debugging
- C. Variables and Constants
 - a. Creating variables and named constants
 - b. Using variables and constants
 - c. Arithmetic work with variables
- D. Selection Structures
 - a. Comparison and Relational Operators
 - b. If
 - c. If/Else

- d. Nested
- e. Case Selection

E. Repetition Structures

- a. For Next
- b. Do Loop
- c. Counters and Accumulators
- d. Nesting
- F. Sub and Function Procedures
 - a. Creating sub and function procedures
 - b. Using sub and function procedures
 - c. Passing information
 - d. Passing variables
 - e. Return variables
- G. Arrays
 - a. One-dimensional arrays
 - b. Parallel one-dimensional arrays
 - c. Two-dimensional arrays
- I. Structures and Sequential Access Files
 - a. Create a structure
 - b. Sequential access files
 - c. Reading and writing to file

Delivery Methods and Distance Education

Delivery Method: Please list all that apply -Face to face -Online (purely online no face-to-face contact) -Online with some required face-to-face meetings ("Hybrid") -Online course with on ground testing -iTV – Interactive video = Face to face course with significant required activities in a distance modality -Other

Face 2 Face Online Hybrid Interactive

Rigor Statement: Assignments and evaluations should be of the same rigor as those used in the on-ground course. If they are not the same as those noted in the COR on the Methods of Evaluation and out-of-class assignments pages, indicate what the differences are and why they are being used. For instance, if labs, field trips, or site visits are required in the face to face section of this course, how will these requirements be met with the same rigor in the Distance Education section?

All assignments in distance education courses (online, hybrid and iTV) of IT C251 are of the same rigor as those in the on-ground course, except that students in purely online sections will submit all of their assignments virtually. Instructor evaluation of student work in distance education courses is the same as in the on-ground course, except that evaluation of student work in online is presented virtually. Instead of onsite lectures, hybrid and online courses use a variety of methods including, but not limited to videos, interactive simulations and written lecture notes.

Effective Student-Instructor Contact: Good practice requires both asynchronous and synchronous contact for effective contact. List the methods expected of all instructors teaching the course. -Learning Management System -Discussion Forums -Moodle Message -Other Contact -Chat/Instant Messaging -E-mail -Face-to-face meeting(s) -Newsgroup/Discussion Board -Proctored Exam -Telephone -iTV - Interactive Video -Other (specify)

Learning Management System Discussion Forums Inbox and/or email Software and Equipment: What additional software or hardware, if any, is required for this course purely because of its delivery mode? How is technical support to be provided?

No Value

Accessibility: Section 508 of the Rehabilitation Act requires access to the Federal government's electronic and information technology. The law covers all types of electronic and information technology in the Federal sector and is not limited to assistive technologies used by people with disabilities. It applies to all Federal agencies when they develop, procure, maintain, or use such technology. Federal agencies must ensure that this technology is accessible to employees and the public to the extent it does not pose an "undue burden". I am using -iTV—Interactive Video only -Learning management system -Publisher course with learning management system interface.

s508_itv s508_publisher

Class Size: Good practice is that section size should be no greater in distance ed modes than in regular face-to-face versions of the course. Will the recommended section size be lower than in on-ground sections? If so, explain why.

The size of the online section is not constrained by computer lab seating. Historical enrollment patterns have shown that the face to face and online section sizes are similar in number of students.