
CSCIC254
: Object Oriented Programming

General Information

Faculty Minimum Qualifications

Course Development Options

Basic Skills Status (CB08)

Course is not a basic skills course.

Course Special Class Status (CB13)

Course is not a special class.

Allow Students to Gain Credit by
Exam/Challenge

Allowed Number of Retakes

0

Course Prior To College Level (CB21)

Not applicable.

Cerro Coso College

Course Outline of Record Report 
10/13/2021

Author: -

Course Code (CB01) : CSCIC254

Course Title (CB02) : Object Oriented Programming

Department: Business Information Technolog

Proposal Start: Fall 2013

TOP Code (CB03) : (0706.00) Computer Science (transfer)

SAM Code (CB09) : Non-occupational

Distance Education Approved: Yes

Course Control Number (CB00) : CCC000547178

Curriculum Committee Approval Date: 05/03/2013

Board of Trustees Approval Date: 06/13/2013

External Review Approval Date: 07/18/2013

Course Description: This course follows the Introduction to Computer Science course with a focus on object oriented
programming and design. A greater emphasis is placed on abstraction and using programming to
solve a wide range of problems. Intermediate data structures are also addressed including trees,
graphs, stacks, queues and linked lists. Students learn how to use the program development life
cycle to design, code, and test programs.

Submission Type: New Course

Author: No value

Master Discipline Preferred: Computer Science

Alternate Master Discipline Preferred: No value

Bachelors or Associates Discipline Preferred: No value

Additional Bachelors or Associates Discipline
Preferred:

No value

Grade Options

Letter Grade Methods
Pass/No Pass



Rationale For Credit By Exam/Challenge

No value

Retake Policy Description

Type:|Non-Repeatable Credit
Allow Students To Audit Course

Course Support Course Status (CB26)

No value

Associated Programs

Transferability & Gen. Ed. Options

Course is part of a program (CB24)

Associated Program Award Type Active

CC Liberal Arts: Mathematics & Science A.A. Degree Major Summer 2018 to Fall 2020

Liberal Arts: Mathematics & Science Associate
in Arts Degree

A.A. Degree Major Fall 2020

Course General Education Status (CB25)

No value

Transferability

Transferable to CSU only

Transferability Status

Approved

Units and Hours:

Summary
Minimum Credit Units (CB07) 3

Maximum Credit Units (CB06) 3

Total Course In-Class (Contact)
Hours

54

Total Course Out-of-Class
Hours

108

Total Student Learning Hours 162

Faculty Load 0

Credit / Non-Credit Options

Course Credit Status (CB04) Course Non Credit Category (CB22) Non-Credit Characteristic



Pre-requisites, Co-requisites, Anti-requisites and Advisories

Units and Hours: - Weekly Specialty Hours

Credit - Degree Applicable Credit Course. No Value

Course Classification Status (CB11)

Credit Course.

Funding Agency Category (CB23)

Not Applicable.

Cooperative Work Experience Education
Status (CB10)

Variable Credit Course

Weekly Student Hours Course Student Hours
In Class Out of Classs

Lecture Hours 3 6

Laboratory Hours 0 0

Activity Hours 0 0

Course Duration (Weeks) 18

Hours per unit divisor 0

Course In-Class (Contact) Hours

Lecture 0

Laboratory 0

Activity 0

Total 54

Course Out-of-Class Hours

Lecture 0

Laboratory 0

Activity 0

Total 108

Time Commitment Notes for Students
No value

Faculty Load
Extra Duties: 0 Faculty Load: 0

Activity Name Type In Class Out of Class

No Value No Value No Value No Value

Prerequisite
MATHC151 - Analytic Geometry and Calculus I



Entrance Skills

Limitations on Enrollment

Specifications

Some of the data structures that will be used are based on higher level math concepts.

AND

Prerequisite
CSCIC252 - Introduction to Computer Science

This course requires a student to know the basics of computer programming through creating functions. Students should also be comfortable
writing and reading algorithms. This is all information in the CSCI C252 course.

Entrance Skills Description

No value No value

Limitations on Enrollment Description

No value No value

Methods of Instruction

Methods of Instruction Problem Solving

Rationale No value

Methods of Instruction Project-based learning

Rationale No value

Methods of Instruction Skills Development and Performance

Rationale No value

Methods of Instruction Peer analysis, critique & feedback

Rationale No value



Methods of Instruction Outside reading

Rationale No value

Methods of Instruction Lecture

Rationale No value

Methods of Instruction Laboratory

Rationale No value

Methods of Instruction Discussion

Rationale No value

Methods of Instruction Computational Work

Rationale No value

Assignments

A. Reading Text - Preparing for class by reading the chapters assigned
B. Programming Assignments - Programming assignments week
C. Additional Reading - Supplemental information provided by the instructor to prepare for the class
D. Group work - Group work time for a group project

Methods of Evaluation Rationale

Homework Programming assignments demonstrating student's ability to design a application using an
object-oriented programming language, data structures, and existing library. Example: Create a
grade book program. You will have a student class which will take

Research Paper Essays demonstrating students' understanding of social computing issues. Example: Using a
current event, discuss how computing in changing and what effects it will have on the future of
computing.

Tests Objective tests/quizzes demonstrating student's knowledge of tracing code, data structures, test
plans, and object oriented programming. Example: Trace the following code snippet which
includes a class and an object. What does the object hold befor

Equipment

No Value

Textbooks

Author Title Publisher Date ISBN



Learning Outcomes and Objectives

No value

Kubica, J. (2012) Computational
Fairy Tales, , Kubica

Carrano, F., Henry, T.. (2012)
Data Abstraction & Problem
Solving with C++: Walls and
Mirrors, , Pearson

Other Instructional Materials

Description Software: Microsoft. Microsoft C++ Express Edition 2010, Express 2010 ed. -Free C++ compiler

Author

Citation Object Oriented Programming

Materials Fee

No

Course Objectives

CSLOs

Expected SLO Performance: 70.0Implement, test, and debug simple recursive functions and procedures.

Expected SLO Performance: 70.0Explain how to use class hierarchies, inheritance, and polymorphism correctly to reuse existing design and code.

Expected SLO Performance: 70.0
Create programming solutions that use existing libraries and data structures including arrays, records, strings, linked lists, stacks, queues, and hash
tables.

Expected SLO Performance: 70.0Discuss significant trends and societal impacts related to computing, software, and the Internet.

Expected SLO Performance: 70.0Compare and contrast object-oriented analysis and design with structured analysis and design.

Expected SLO Performance: 70.0Design, implement, test, and debug simple object oriented programs.

Science
Liberal Arts: Mathematics &
Science AA Degree

Apply algebraic, graphical, numerical, and other methods to solve applied problems in the areas of mathematics, natural
sciences, computer graphics, and computer animation.

Expected SLO Performance: 70.0Evaluate tradeoffs in lifetime management (reference counting vs garbage collection).



Outline

Course Outline

A. Societal and Professional Issues
a. Computing and the Internet
b. Social impact of computing
c. Privacy
B. Programming Languages
a. Object-oriented languages vs procedural languages
b. Effects of scale on programming methodology
C. Basic Algorithmic Analysis
a. Asymptotic analysis of upper and average complexity bounds
b. Best; average; and worst case behaviors
c. Big O and little o notations
d. Standard complexity classes
e. Empirical measurements of performance
f. Time and space tradeoffs
D. Language Translation
a. Comparison of interpreters and compilers
b. Machine-dependent/independent aspects of translation
E. Programming Constructs
a. Cohesion and decoupling
b. Assertions; including pre/post conditions and loop invariants
c. Software reuse
d. Self-documentation
e. Object oriented analysis and design
f. Component level design
F. Software Lifecycle
a. Requirements analysis and design modeling tools
b. Testing tools
c. Configuration management
G. Object Oriented Principles
a. Abstraction
b. Objects
c. Classes
d. Encapsulation
e. Inheritance
f. Polymorphism
H. Object Oriented Programming
a. Class constructors and destructors
b. ADTs
c. Reusable software components
d. APIs
e. Modeling tools
f. Class diagrams
g. Encapsulation and information hiding
h. Class hierarchies
i. Abstract and interface classes
j. Templates
I. Abstraction Mechanisms
a. Procedures; functions and iterators as abstraction mechanisms
b. Parameterization mechanisms
J. Recursion
a. Recursive mathematical functions
b. Simple recursive procedures
c. Divide-and-conquer strategies
d. Recursive backtracking
e. Implementation of recursion
K. Computing algorithms
a. Searching
b. Sorting
i. Quadratic sorting algorithms
ii. O(N log N) sorting algorithms
L. Data Structures



a. Pointers and references
b. Stacks
c. Static; stack and heap allocation
d. Queues
e. Linked lists
f. Hash tables
g. Runtime storage management
M. Graphs and Trees
a. Trees
b. Undirected graphs
c. Directed Graphs
d. Binary search trees
N. Declarations and types
a. Declaration models
b. Garbage collection
O. Software security
a. Buffer overflows
b. Memory leaks
c. Malicious code
d. Unauthorized and back-door access
e. Security-aware exception handling
P. Virtual Machines
a. Concept of virtual machine
b. Hierarchy of virtual machine
Q. Human-Computer Interaction
a. Universal principals
b. Human-centered considerations
c. Usability testing and verification
d. Design trade-offs
e. Standard API graphics
R. Event-Driven programming
a. Graphics API
b. Event Creation
c. Event-handling methods
d. Exception handling
e. Debugging in the API environment
A. Basic Algorithmic Analysis
a. Asymptotic analysis of upper and average complexity bounds
b. Best; average; and worst case behaviors
c. Big O and little o notations
B. Programming Constructs
a. Assertions; including pre/post conditions and loop invariants
b. Self-documentation
c. Object oriented analysis and design
C. Software Lifecycle
a. Requirements analysis and design modeling tools
b. Testing tools
c. Configuration management
D. Object Oriented Programming
a. Objects
b. Classes
c. Class constructors and destructors
d. ADTs
e. Reusable software components
f. APIs
g. Modeling tools
h. Class diagrams
i. Encapsulation and information hiding
j. Class hierarchies
k. Abstract and interface classes
l. Templates
E. Recursion
a. Recursive mathematical functions
b. Simple recursive procedures
c. Divide-and-conquer strategies
d. Recursive backtracking
e. Implementation of recursion



Delivery Methods and Distance Education

Delivery Method:
Please list all that apply
-Face to face -Online (purely online no face-to-face contact) -Online with some required
face-to-face meetings (“Hybrid”) -Online course with on ground testing -iTV – Interactive video = Face to face course with significant
required activities in a distance modality -Other

Face 2 Face
Online
Hybrid
Interactive

Rigor Statement:
Assignments and evaluations should be of the same rigor as those used in the on-ground course. If they are not the
same as those noted in the COR on the Methods of Evaluation and out-of-class assignments pages, indicate what the differences are
and why they are being used. For instance, if labs, field trips, or site visits are required in the face to face section of this course, how
will these requirements be met with the same rigor in the Distance Education section?

No Value

Effective Student-Instructor Contact:
Good practice requires both asynchronous and synchronous contact for effective contact. List the
methods expected of all instructors teaching the course.
-Learning Management System
-Discussion Forums
-Moodle Message
-Other
Contact
-Chat/Instant Messaging
-E-mail
-Face-to-face meeting(s)
-Newsgroup/Discussion Board
-Proctored Exam
-Telephone
-iTV -
Interactive Video
-Other (specify)

F. Computing algorithms
a. Searching
b. Sorting
i. Quadratic sorting algorithms
ii. O(N log N) sorting algorithms
G. Data Structures
a. Pointers and references
b. Stacks
c. Static; stack and heap allocation
d. Queues
e. Linked lists
f. Hash tables
g. Runtime storage management
H. Graphs and Trees
a. Trees
b. Undirected graphs
c. Directed Graphs
d. Binary search trees
I. Declarations and types
a. Garbage collection
J. Software security
a. Buffer overflows
b. Memory leaks
c. Malicious code
d. Unauthorized and back-door access
e. Security-aware exception handling
K. Human-Computer Interaction
a. Usability testing and verification
b. Standard API graphics
L. Event-Driven programming
a. Graphics API
b. Event Creation
c. Event-handling methods
d. Exception handling
e. Debugging in the API environment
 



contact_moodle_forums
contact_moodle_message
contact_email
contact_face2face
contact_itv
contact_other

Software and Equipment:
What additional software or hardware, if any, is required for this course purely because of its delivery mode?
How is technical support to be provided?

No Value

Accessibility:
Section 508 of the Rehabilitation Act requires access to the Federal government's electronic and information technology.
The law covers all types of electronic and information technology in the Federal sector and is not limited to assistive technologies
used by people with disabilities. It applies to all Federal agencies when they develop, procure, maintain, or use such technology.
Federal agencies must ensure that this technology is accessible to employees and the public to the extent it does not pose an "undue
burden".
I am using
-iTV—Interactive Video only
-Learning management system
-Publisher course with learning management system
interface.

s508_itv
s508_moodle
s508_publisher

Class Size:
Good practice is that section size should be no greater in distance ed modes than in regular face-to-face versions of the
course. Will the recommended section size be lower than in on-ground sections? If so, explain why.

No Value


