Cerro Coso College Course Outline of Record Report 10/13/2021

CSCIC254 : Object Oriented Programming

General Information

Author:	-
Course Code (CB01) :	CSCIC254
Course Title (CB02) :	Object Oriented Programming
Department:	Business Information Technolog
Proposal Start:	Fall 2013
TOP Code (CB03) :	(0706.00) Computer Science (transfer)
SAM Code (CB09) :	Non-occupational
Distance Education Approved:	Yes
Course Control Number (CB00) :	CCC000547178
Curriculum Committee Approval Date:	05/03/2013
Board of Trustees Approval Date:	06/13/2013
External Review Approval Date:	07/18/2013
Course Description:	This course follows the Introduction to Computer Science course with a focus on object oriented programming and design. A greater emphasis is placed on abstraction and using programming to solve a wide range of problems. Intermediate data structures are also addressed including trees, graphs, stacks, queues and linked lists. Students learn how to use the program development life cycle to design, code, and test programs.
Submission Type:	New Course
Author:	No value

Faculty Minimum Qualifications

Master Discipline Preferred:	Computer Science
Alternate Master Discipline Preferred:	No value
Bachelors or Associates Discipline Preferred:	No value
Additional Bachelors or Associates Discipline Preferred:	No value

Course Development Options

Basic Skills Status (CB08) Course is not a basic skills course.	Course Special Class Status (CB13) Course is not a special class.	Grade Options Letter Grade Methods Pass/No Pass
Allow Students to Gain Credit by Exam/Challenge	Allowed Number of Retakes	Course Prior To College Level (CB21) Not applicable.

Rationale For Credit By Exam/Challer No value Course Support Course Status (CB26 No value Associated Programs	enge Retake Policy Descri Type: Non-Repeatab	ption le Credit	Allow Students To Audit Course
Course is part of a program (CB2 Associated Program	4) Award Type		Active
CC Liberal Arts: Mathematics & Scien	ice A.A. Degree Major		Summer 2018 to Fall 2020
Liberal Arts: Mathematics & Science A in Arts Degree	Associate A.A. Degree Major		Fall 2020
Transferability & Gen. Ed	. Options		
Course General Education Status No value Transferability Transferable to CSU only	(CB25)	Transferability Status Approved	5
Units and Hours:			
Summary Minimum Credit Units (CB07) Maximum Credit Units (CB06) Total Course In-Class (Contact) Hours Total Course Out-of-Class Hours Total Student Learning Hours Faculty Load	3 3 54 108 162 0		

Credit / Non-Credit Options

Course Credit Status (CB04)

Course Non Credit Category (CB22)

Non-Credit Characteristic

Credit - Degree Applicable

Credit Course.

No Value

Course Classification Status (CB11)

Credit Course.

Variable Credit Course

Weekly Student Hours

	In Class	Out of Classs
Lecture Hours	3	6
Laboratory Hours	0	0
Activity Hours	0	0

Funding Agency Category (CB23)

Not Applicable.

Cooperative Work Experience Education Status (CB10)

108

Course Student Hours

Course Duration (Weeks)	18
Hours per unit divisor	0
Course In-Class (Contact) Hours	
Lecture	0
Laboratory	0
Activity	0
Total	54
Course Out-of-Class Hours	
Lecture	0
Laboratory	0
Activity	0

Time Commitment Notes for Students

No value

Faculty Load

Extra Duties: 0

Faculty Load: 0

Total

Units and Hours: - Weekly Specialty Hours

Activity Name	Туре	In Class	Out of Class
No Value	No Value	No Value	No Value

Pre-requisites, Co-requisites, Anti-requisites and Advisories

Prerequisite

MATHC151 - Analytic Geometry and Calculus I

Some of the data structures that will be used are based on higher level math concepts.

AND

Prerequisite

CSCIC252 - Introduction to Computer Science

This course requires a student to know the basics of computer programming through creating functions. Students should also be comfortable writing and reading algorithms. This is all information in the CSCI C252 course.

Entrance Skills	
Entrance Skills	Description
No value	No value
Limitations on Enrollment	
Limitations on Enrollment	Description
No value	No value
Specifications	
Methods of Instruction	
Methods of Instruction	Problem Solving
Rationale	No value
Methods of Instruction	Project-based learning
Rationale	No value
Methods of Instruction	Skills Development and Performance
Rationale	No value
Methods of Instruction	Peer analysis, critique & feedback
Rationale	No value

Methods of Instruction Rationale	Outside reading No value			
Methods of Instruction Rationale	Lecture No value			
Methods of Instruction Rationale	Laboratory No value			
Methods of Instruction Rationale	Discussion No value			
Methods of Instruction Rationale	Computational Work No value			
Assignments A. Reading Text - Preparing for class by reading the chapters assigned B. Programming Assignments - Programming assignments week C. Additional Reading - Supplemental information provided by the instructor to prepare for the class D. Group work - Group work time for a group project				
Methods of Evaluation	Rationale			
Homework	Programming assignments demonstrating student's ability to design a application using an object-oriented programming language, data structures, and existing library. Example: Create a grade book program. You will have a student class which will take			
Research Paper	Essays demonstrating students' understanding of social computing issues. Example: Using a current event, discuss how computing in changing and what effects it will have on the future of			
Tests	Computing. Objective tests/quizzes demonstrating student's knowledge of tracing code, data structures, test plans, and object oriented programming. Example: Trace the following code snippet which includes a class and an object. What does the object hold befor			
Equipment No Value				
Textbooks				
Author Title	Publisher Date ISBN			

Kubica, J. (2012) Computational Fairy Tales, , Kubica

> Carrano, F., Henry, T.. (2012) Data Abstraction & Problem Solving with C++: Walls and Mirrors, , Pearson

Other Instructional Materials

Description

Software: Microsoft. Microsoft C++ Express Edition 2010, Express 2010 ed. -Free C++ compiler

Author Citation

Object Oriented Programming

Materials Fee

No

Learning Outcomes and Objectives

Course Objectives

No value

CSLOs

Implement, test, and debug sim	ple recursive functions and procedures.	Expected SLO Performance: 70.0		
Explain how to use class hierarc	hies, inheritance, and polymorphism correctly to reuse existing design and code.	Expected SLO Performance: 70.0		
Create programming solutions that use existing libraries and data structures including arrays, records, strings, linked lists, stacks, queues, and hash tables.				
Discuss significant trends and societal impacts related to computing, software, and the Internet. Expected SLO Performance: 70.0				
Compare and contrast object-oriented analysis and design with structured analysis and design. Expected SLO Performance: 70.0				
Design, implement, test, and debug simple object oriented programs. Expected SLO Performance: 70.0				
<i>Science</i> Liberal Arts: Mathematics & Science AA Degree	Apply algebraic, graphical, numerical, and other methods to solve applied problems in the area sciences, computer graphics, and computer animation.	s of mathematics, natural		

Evaluate tradeoffs in lifetime management (reference counting vs garbage collection).

Expected SLO Performance: 70.0

Outline

Course Outline

- A. Societal and Professional Issues
- a. Computing and the Internet
- b. Social impact of computing
- c. Privacy
- B. Programming Languages
- a. Object-oriented languages vs procedural languages
- b. Effects of scale on programming methodology
- C. Basic Algorithmic Analysis
- a. Asymptotic analysis of upper and average complexity bounds
- b. Best; average; and worst case behaviors
- c. Big O and little o notations
- d. Standard complexity classes
- e. Empirical measurements of performance
- f. Time and space tradeoffs
- D. Language Translation
- a. Comparison of interpreters and compilers
- b. Machine-dependent/independent aspects of translation
- E. Programming Constructs
- a. Cohesion and decoupling
- b. Assertions; including pre/post conditions and loop invariants
- c. Software reuse
- d. Self-documentation
- e. Object oriented analysis and design
- f. Component level design
- F. Software Lifecycle
- a. Requirements analysis and design modeling tools
- b. Testing tools
- c. Configuration management
- G. Object Oriented Principles
- a. Abstraction
- b. Objects
- c. Classes
- d. Encapsulation
- e. Inheritance
- f. Polymorphism
- H. Object Oriented Programming
- a. Class constructors and destructors
- b. ADTs
- c. Reusable software components
- d. APIs
- e. Modeling tools
- f. Class diagrams
- g. Encapsulation and information hiding
- h. Class hierarchies
- i. Abstract and interface classes
- j. Templates
- I. Abstraction Mechanisms
- a. Procedures; functions and iterators as abstraction mechanisms
- b. Parameterization mechanisms
- J. Recursion
- a. Recursive mathematical functions
- b. Simple recursive procedures
- c. Divide-and-conquer strategies
- d. Recursive backtracking
- e. Implementation of recursion
- K. Computing algorithms
- a. Searching
- b. Sorting
- i. Quadratic sorting algorithms
- ii. O(N log N) sorting algorithms
- L. Data Structures

- a. Pointers and references
- b. Stacks
- c. Static; stack and heap allocation
- d. Queues
- e. Linked lists
- f. Hash tables
- g. Runtime storage management
- M. Graphs and Trees
- a. Trees
- b. Undirected graphs
- c. Directed Graphs
- d. Binary search trees
- N. Declarations and types
- a. Declaration models
- b. Garbage collection
- O. Software security
- a. Buffer overflows
- b. Memory leaks
- c. Malicious code
- d. Unauthorized and back-door access
- e. Security-aware exception handling
- P. Virtual Machines
- a. Concept of virtual machine
- b. Hierarchy of virtual machine
- Q. Human-Computer Interaction
- a. Universal principals
- b. Human-centered considerations
- c. Usability testing and verification
- d. Design trade-offs
- e. Standard API graphics
- R. Event-Driven programming
- a. Graphics API
- b. Event Creation
- c. Event-handling methods
- d. Exception handling
- e. Debugging in the API environment
- A. Basic Algorithmic Analysis
- a. Asymptotic analysis of upper and average complexity bounds
- b. Best; average; and worst case behaviors
- c. Big O and little o notations
- B. Programming Constructs
- a. Assertions; including pre/post conditions and loop invariants
- b. Self-documentation
- c. Object oriented analysis and design
- C. Software Lifecycle
- a. Requirements analysis and design modeling tools
- b. Testing tools
- c. Configuration management
- D. Object Oriented Programming
- a. Objects
- b. Classes
- c. Class constructors and destructors
- d. ADTs
- e. Reusable software components
- f. APIs
- g. Modeling tools
- h. Class diagrams
- i. Encapsulation and information hiding
- j. Class hierarchies
- k. Abstract and interface classes
- l. Templates
- E. Recursion
- a. Recursive mathematical functions
- b. Simple recursive procedures
- c. Divide-and-conquer strategies
- d. Recursive backtracking
- e. Implementation of recursion

- F. Computing algorithms
- a. Searching
- b. Sorting
- i. Quadratic sorting algorithms
- ii. O(N log N) sorting algorithms
- G. Data Structures
- a. Pointers and references
- b. Stacks
- c. Static; stack and heap allocation
- d. Queues
- e. Linked lists f. Hash tables
- g. Runtime storage management
- H. Graphs and Trees
- a. Trees
- b. Undirected graphs
- c. Directed Graphs
- d. Binary search trees
- I. Declarations and types
- a. Garbage collection
- J. Software security
- a. Buffer overflows
- b. Memory leaks
- c. Malicious code
- d. Unauthorized and back-door access
- e. Security-aware exception handling
- K. Human-Computer Interaction
- a. Usability testing and verification
- b. Standard API graphics
- L. Event-Driven programming
- a. Graphics API
- b. Event Creation
- c. Event-handling methods
- d. Exception handling
- e. Debugging in the API environment

Delivery Methods and Distance Education

Delivery Method: Please list all that apply -Face to face -Online (purely online no face-to-face contact) -Online with some required face-to-face meetings ("Hybrid") -Online course with on ground testing -iTV – Interactive video = Face to face course with significant required activities in a distance modality -Other

Face 2 Face Online Hybrid Interactive

Rigor Statement: Assignments and evaluations should be of the same rigor as those used in the on-ground course. If they are not the same as those noted in the COR on the Methods of Evaluation and out-of-class assignments pages, indicate what the differences are and why they are being used. For instance, if labs, field trips, or site visits are required in the face to face section of this course, how will these requirements be met with the same rigor in the Distance Education section?

No Value

Effective Student-Instructor Contact: Good practice requires both asynchronous and synchronous contact for effective contact. List the methods expected of all instructors teaching the course. -Learning Management System -Discussion Forums -Moodle Message -Other Contact -Chat/Instant Messaging -E-mail -Face-to-face meeting(s) -Newsgroup/Discussion Board -Proctored Exam -Telephone -iTV - Interactive Video -Other (specify)

contact_moodle_forums contact_moodle_message contact_email contact_face2face contact_itv contact_other

Software and Equipment: What additional software or hardware, if any, is required for this course purely because of its delivery mode? How is technical support to be provided?

No Value

Accessibility: Section 508 of the Rehabilitation Act requires access to the Federal government's electronic and information technology. The law covers all types of electronic and information technology in the Federal sector and is not limited to assistive technologies used by people with disabilities. It applies to all Federal agencies when they develop, procure, maintain, or use such technology. Federal agencies must ensure that this technology is accessible to employees and the public to the extent it does not pose an "undue burden". I am using -iTV—Interactive Video only -Learning management system -Publisher course with learning management system interface.

s508_itv s508_moodle s508_publisher

Class Size: Good practice is that section size should be no greater in distance ed modes than in regular face-to-face versions of the course. Will the recommended section size be lower than in on-ground sections? If so, explain why.

No Value