
CSCIC252 : Introduction to Computer Science

General Information

Faculty Minimum Qualifications

Course Development Options

Basic Skills Status (CB08)

Course is not a basic skills course.

Course Special Class Status (CB13)

Course is not a special class.

Allow Students to Gain Credit by
Exam/Challenge

Allowed Number of Retakes

0

Course Prior To College Level (CB21)

Not applicable.

Rationale For Credit By Exam/Challenge Retake Policy Description
All St d t T A dit C

Cerro Coso College 
Course Outline of Record Report 
10/13/2021

Author: Tech Support

Course Code (CB01) : CSCIC252

Course Title (CB02) : Introduction to Computer Science

Department: Business Information Technolog

Proposal Start: Spring 2014

TOP Code (CB03) : (0706.00) Computer Science (transfer)

SAM Code (CB09) : Non-occupational

Distance Education Approved: Yes

Course Control Number (CB00) : CCC000360376

Curriculum Committee Approval Date: 05/03/2013

Board of Trustees Approval Date: 06/13/2013

External Review Approval Date: 06/13/2013

Course Description: This course explores topics that provide students with a foundation in computer science. This
course covers the fundamental issues of algorithms, computer organization, software,
computational theory, fundamental object oriented programming and social and ethical issues of
computing.

Submission Type: New Course

Author: No value

Master Discipline Preferred: Computer Science

Alternate Master Discipline Preferred: No value

Bachelors or Associates Discipline Preferred: No value

Additional Bachelors or Associates Discipline
Preferred:

No value

Grade Options



No value No value Allow Students To Audit Course

Course Support Course Status (CB26)

No value

Associated Programs

Transferability & Gen. Ed. Options

Course is part of a program (CB24)

Associated Program Award Type Active

CC Liberal Arts: Mathematics & Science A.A. Degree Major Summer 2018 to Fall 2020

Associate in Science Degree In Mathematics
for Transfer

A.A. Degree for Transfer Summer 2018

Liberal Arts: Mathematics & Science Associate
in Arts Degree

A.A. Degree Major Fall 2020

Course General Education Status (CB25)

No value

Transferability

Transferable to both UC and CSU

Transferability Status

Approved

Units and Hours:

Summary
Minimum Credit Units (CB07) 3

Maximum Credit Units (CB06) 3

Total Course In-Class (Contact)
Hours

90

Total Course Out-of-Class
Hours

72

Total Student Learning Hours 162

Faculty Load 0

Credit / Non-Credit Options



Units and Hours: - Weekly Specialty Hours

Course Credit Status (CB04)

Credit - Degree Applicable

Course Non Credit Category (CB22)

Credit Course.

Non-Credit Characteristic

No Value

Course Classification Status (CB11)

Credit Course.

Funding Agency Category (CB23)

Not Applicable.

Cooperative Work Experience Education
Status (CB10)

Variable Credit Course

Weekly Student Hours Course Student Hours
In Class Out of Classs

Lecture Hours 2 4

Laboratory Hours 3 0

Activity Hours 0 0

Course Duration (Weeks) 18

Hours per unit divisor 0

Course In-Class (Contact) Hours

Lecture 0

Laboratory 0

Activity 0

Total 90

Course Out-of-Class Hours

Lecture 0

Laboratory 0

Activity 0

Total 72

Time Commitment Notes for Students
No value

Faculty Load
Extra Duties: 0 Faculty Load: 0

Activity Name Type In Class Out of Class

No Value No Value No Value No Value



Pre-requisites, Co-requisites, Anti-requisites and Advisories

Entrance Skills

Limitations on Enrollment

Specifications

Prerequisite
MATHC055 - Intermediate Algebra

Math skills are required for the algorithmic definitions, conversions between decimal and other number systems, and logical skills required.

AND

Advisory
CSCIC101 - Introduction to Computer Information Systems

Students must be able to install software, understand the basic of networking, databases, and an idea of what programming is. All of this is
discussed in the CSCI C101 course.

Entrance Skills Description

No value No value

Limitations on Enrollment Description

No value No value

Methods of Instruction

Methods of Instruction Computational Work

Rationale No value

Methods of Instruction Demonstration

Rationale No value

Methods of Instruction Discussion

Rationale No value



Methods of Instruction Laboratory

Rationale No value

Methods of Instruction Lecture

Rationale No value

Methods of Instruction Outside reading

Rationale No value

Methods of Instruction Problem Solving

Rationale No value

Methods of Instruction Project-based learning

Rationale No value

Methods of Instruction Skills Development and Performance

Rationale No value

Assignments

A. Reading Text – Preparing for class by reading the chapters assigned
B.Programming Assignments – Programming assignments every 2 weeks
C. Homework Assignments – Problem sets as handouts or from the text to practice concepts,
preparing for presenting topics on the course
D. Group work – Group work time for a group project

Methods of Evaluation Rationale

Tests Objective tests/quizzes demonstrating student’s knowledge of algorithmic problem solving
methods, components of a computer system, and networking concepts. Examples include: asking
them to create an algorithm which uses addition to multiply to numbers, describe the parts of the
von Neumann architecture

Research Paper Essays demonstrating students’ understanding of social computing issues. Example: Discuss a
social computing issue from a current event. What is happening and how will it impact the future
of computing?

Homework Programming assignments demonstrating student’s ability to design a basic application using an
object-oriented programming language. Example: Create a program in C++ which creates a pay
stub for employees. The inputs are the employee id, hours worked, and hourly wage. You must
output their gross pay (including any overtime defined as over 40 hours a week), taxes taken out
and net pay.

Equipment

Microsoft.
Microsoft Visual Studio C++ Express Edition
, Express 2010 ed.



Learning Outcomes and Objectives

No value

Outline

-- Free C++ compiler for Windows machines

Textbooks

Author Title Publisher Date ISBN

Kubica, J Computational Fairy Tales Course Technology 2012

Kubica Gersting, Judith L., and
Michael Schneider

Invitation to Computer Science Course Technology 2010

Other Instructional Materials

No Value

Materials Fee

No value

Course Objectives

CSLOs

Expected SLO Performance: 70.0
Design, implement, test, and debug a program using fundamental programming and fundamental data structures including basic computation,
simple I/O, conditional and iterative structures, and functions.

Expected SLO Performance: 70.0Choose professional behavior in response to ethical issues inherent in computing.

Expected SLO Performance: 70.0
Differentiate between object oriented, structured, and functional programming methodologies using the history of programming languages.

Expected SLO Performance: 70.0Use pseudo code, trace the execution, test, and debug algorithms for solving simple problems.

Expected SLO Performance: 70.0Demonstrate different forms of binding, visibility, scoping, and lifetime management.

Course Outline

A. History of Computing
          a. Prehistory – the world before 1946



          b. History of computer hardware, software networking
          c. Pioneers of computing
          d. Overview of Operating Systems
B. Societal and Professional Issues and Ethical Conduct
          a. Codes of ethics and responsible conduct
          b. Intellectual property, copyright, plagiarism
          c. Computing and the internet
          d. Social impact of computing
          e. Privacy
C. Machine and Assembly level representation of data
          a. Von Neumann Architecture
          b. Bits, Bytes, and words
          c. Numeric data representation and number bases
          d. Representation of nonnumeric data
          e. Control unit; instruction fetch, decode and execution
          f. Instruction sets and types
D. Basic Computability
         a. Finite-state machines
          b. Turing machine
E. Algorithms and Problem-solving
          a. Problem solving strategies
          b. The role of algorithms in the problem solving process
          c. Implementation strategies for algorithms and debugging strategies
          d. Concept and properties of algorithms
          e. Simple algorithm development
F. Program Development
          a. Software lifecycle
i.Program development phases
          b. Fundamental design concepts and principles
          c. Requirements elicitation
          d. Test case design
                    i. Black and White-box testing
                    ii. Unit , integration, validation testing
          e. Characteristics of maintainable software
G. Overview of Programming Languages
          a. History of programming languages
          b. Brief survey of programming paradigms
                    i. Scripting languages
                    ii. Procedural languages
                    iii. Functional Languages
                    iv. Object oriented languages
H. Software tools and environment
          a. Setting up software tool
          b. Compiling, interpreting, linking, executing, testing and debugging in tool
I. Fundamental Programming
          a. Basic syntax and semantics of a higher-level language
          b. Data Types
                    i. Concept of types as values and operations
                    ii. Binding, Visibility, scope and lifetime
          c. Variables
          d. Expressions
          e. Assignment
          f. Commenting
J. Conditional Control Structures         
          a. Comparisons
          b. Boolean Logic
          c. If
          d. If/Else
          e. Switch
K. Iterative Control Structures
          a. While
          b. For
          c. Do While
          d. Input validation
L. Fundamental Data Structures
          a. Arrays
          b. Strings and string processing



          c. Data representation in memory
M. Functions
          a. Functions as abstraction
          b. Parameters
                    i. Reference vs value
          c. Data Structures and function
          d. Reusability
N. Object Oriented Programming
          a. Objects
          b. Classes
          c. Methods
          d. Separation of behavior and implementation
          e. Inheritance
i. Encapsulation and information-hiding
          f. Polymorphism
          g. Reusability
O. Graphical Programming
          a. Creating a GUI
          b. Event-Driven programming
 

Lab Outline

A. Machine and Assembly level representation of data
          a. Control unit and Von Neumann architecture.
          b. Number Base Conversion
B. Basic Computability
          a. Finite-state machines
          b. Turing machine
C. Algorithms and Problem-solving
          a. Implementation and debugging strategies
          b. Simple algorithm development
D. Software tools and environment
          a. Setting up software tool
          b. Compiling, interpreting, linking, executing, testing and debugging in tool
E. Fundamental Programming
          a. Basic syntax and semantics of a higher-level language
          b. Data Types
          c. Variables
          d. Expressions
          e. Assignment
          f. Commenting
F. Conditional Control Structures         
          a. Comparisons
          b. Boolean Logic
          c. If
          d. If/Else
          e. Switch
G. Iterative Control Structures
          a. While
          b. For
          c. Do While
          d. Input validation
H. Fundamental Data Structures
          a. Arrays
          b. Strings and string processing
          c. Structs
I. Functions
          a. Function creation
          b. Parameters
                    i. Reference vs value
          c. Data Structures and function
          d. Reusability
J. Object Oriented Programming
          a. Objects
          b. Classes



Delivery Methods and Distance Education

Delivery Method: Please list all that apply -Face to face -Online (purely online no face-to-face contact) -Online with some required
face-to-face meetings (“Hybrid”) -Online course with on ground testing -iTV – Interactive video = Face to face course with significant
required activities in a distance modality -Other

Face 2 Face
Online
Hybrid
Interactive

Rigor Statement: Assignments and evaluations should be of the same rigor as those used in the on-ground course. If they are not the
same as those noted in the COR on the Methods of Evaluation and out-of-class assignments pages, indicate what the differences are
and why they are being used. For instance, if labs, field trips, or site visits are required in the face to face section of this course, how
will these requirements be met with the same rigor in the Distance Education section?

No Value

Effective Student-Instructor Contact: Good practice requires both asynchronous and synchronous contact for effective contact. List the
methods expected of all instructors teaching the course. -Learning Management System -Discussion Forums -Moodle Message -Other
Contact -Chat/Instant Messaging -E-mail -Face-to-face meeting(s) -Newsgroup/Discussion Board -Proctored Exam -Telephone -iTV -
Interactive Video -Other (specify)

contact_moodle_forums
contact_moodle_message
contact_email
contact_phone
contact_itv
contact_other

Software and Equipment: What additional software or hardware, if any, is required for this course purely because of its delivery mode?
How is technical support to be provided?

No Value

Accessibility: Section 508 of the Rehabilitation Act requires access to the Federal government's electronic and information technology.
The law covers all types of electronic and information technology in the Federal sector and is not limited to assistive technologies
used by people with disabilities. It applies to all Federal agencies when they develop, procure, maintain, or use such technology.
Federal agencies must ensure that this technology is accessible to employees and the public to the extent it does not pose an "undue
burden". I am using -iTV—Interactive Video only -Learning management system -Publisher course with learning management system
interface.

s508_itv
s508_moodle
s508_publisher

          c. Methods
K. Graphical Programming
          a. Creating a GUI
          b. Event-Driven programming
 



Class Size: Good practice is that section size should be no greater in distance ed modes than in regular face-to-face versions of the
course. Will the recommended section size be lower than in on-ground sections? If so, explain why.

No Value


